AMI-Sync Series

INTRODUCTION

  • The AMI-Sync Series is a fully automated, high-performance line of gas physisorption analyzers designed for rapid and accurate surface area and pore size characterization of porous and non-porous materials. Whether analyzing catalysts, zeolites, MOFs, or advanced battery materials, the AMI-Sync Series delivers robust vacuum-volumetric measurement systems backed by intuitive software and comprehensive support for both standard and advanced adsorption techniques.
  • Available in flexible 1-, 2-, or 4-station configurations, the AMI-Sync Series features a common P₀ measuring transducer and supports simultaneous saturation vapor pressure measurements. Each unit is built for high-throughput performance, with options for a dedicated pressure transducer per station to maximize speed, or a shared sensor setup for cost efficiency. A single large-volume dewar supports multiple stations simultaneously, offering an ideal solution for space-conscious laboratories with demanding workloads.
  • AMI-Sync 400 Series Instrument

KEY FEATURES

  • Customizable Configuration for Throughput Analysis Needs
  • The AMI-Sync series offers a scalable solution with up to four high-resolution measurement stations for precise pore size and surface area analysis. For increased throughput, additional instruments can be linked via LAN, expanding to 12 analysis ports with centralized and remote-control capabilities.
  • Extended Analysis Duration
  • AMI-Sync analyzers are equipped with large 3-liter Dewar flasks that allow over 90 hours of continuous analysis. The system supports live refilling during experiments, ensuring uninterrupted data collection during long runs and complex isotherm acquisitions.
  • High Sensitivity & Reproducibility
  • The AMI-Sync Series delivers precise and reliable surface area and porosity data, with a BET detection limit as low as 0.1 m² absolute and 0.01 m²/g specific. It offers outstanding reproducibility—within 1% on standard reference materials like BAM P115—ensuring confidence in repeated analyses.
  • Precision-Engineered Hardware
  • Built with stainless steel and vacuum-brazed manifolds, the system features ultra-durable bellows valves rated for over 5 million cycles. Temperature control maintains ±0.05 °C stability, while 32-bit pressure sensors provide high-resolution, accurate data capture.
  • Cryo TuneTM (Optional Feature)
  • Unlock advanced temperature control with Cryo TuneTM, an optional low-temperature cold bath system designed for precision adsorption studies. Fully integrated with Sync software, Cryo TuneTM allows users to effortlessly conduct adsorption isotherm measurements across a range of temperatures.
  • Optimized Manifold Contamination Control
  • A two-step filtration system protects the manifold from particulates reducing contamination risks and extending instrument life. Combined with stainless steel construction and high-cycle bellows valves, the system ensures clean, reliable operation even in high-throughput environments.
  • Compact & Lab-Ready
  • All models share a compact footprint of 51 ×53 × 93 cm, making them ideal for space-conscious labs. Despite their compact size, Sync analyzers are fully equipped for both research-grade and industrial applications, offering power, durability, and precision in one system.

SOFTWARE

  • Sync Series analyzers are driven by a multilingual, user-friendly software suite that supports:
  • • Control of up to 8 instruments from a single PC
    • Built-in method libraries
    for fast setup and repeatability
    • Customizable analysis profiles with real-time system feedback
    • Automated leak detection and guided maintenance routines
    • CFR 21 Part 11-ready
    sample tracking, including ID and method history
    • Visual instrument status interface for monitoring analysis in progress
  • Additional capabilities include void volume correction, supercritical P0 handling, temperature control with CryoTune, and compatibility with up to 6 gases per station.
  • Isotherm
  • 3-stage evacuation to prevent sample fluidization
  • Main software screen
  • Interactive software screen
  • Data Analysis Capabilities:
  • Isothermal absorption and desorption curve
    BET specific surface area (single and multiple point)
    Langmuir surface area
    Statistical thickness surface area. (STSA)
  • HK pore size analysis
    SF pore size analysis
    NLDFT pore size distribution
    Total pore volume
    t-plot analysis

SPECIFICATIONS

Model AMI-Sync
Specific Model 110 210 220 420 440
Analysis Ports 1 2 2 4 4
p0 Transducer 1 1 1 1 1
Analysis Pressure Transducer 1 1 2 2 4
Surface Area ≥ 0.0005 m2/g
Pore Size 0.35-500 nm
Pore Volume ≥ 0.0001 cm3 /g
Pump Mechanical pump(minimal 5.0×10-4 mmHg)
p/p0 10-5-0.998
Accuracy PTs 1000 mmHg(+/-0.2%F.S.)
Adsorbates N2,CO2,Ar,Kr,H2,O2,CO,NH3,CH4
Dimensions 51 × 53 ×93 cm (16.1 x 20.8 x 36.6 inches) All same dimensional size
Weight 45 kg | 99 pounds (maximum depending on configuration)

Switch-6

  • The automatic multi-channel gas inlet controller, Switch-6, features an integrated design, enabling one- button switching among multiple gases and supporting up to six input ports. Users can select any gas path for output as needed, making it ideal for applications requiring frequent gas changes during various testing procedures.
  • This device is highly compatible, designed to work seamlessly with the full range of AMI instruments and a wide variety of systems from other manufacturers.
  • Safety
  • Features a streamlined valve disassembly and assembly when switching between different gases, significantly reducing the risk of leakage from manual operations. Additionally, a corrosion-resistant version is available upon request to accommodate more demanding environments.
  • Simplicity
  • Enables automatic gas switching with a single button press. It also performs automatic pipeline purging, preventing residual gases from affecting the accuracy of subsequent experimental results.
  • Flexibility
  • Supports six input ports and one output port, with the option to cascade multiple units—allowing for 6, 12, 18, or more gas paths as needed.
  • Automatic Multi-channel Gas Inlet Controller
  •   Switch-6
    Number of ports 6 (12, 18 are optional)
    Tubing size 1/8 inch
    Pressure Near atmospheric
    Gas types N2, H2, Ar, and other gases (corrosive gases such as H2S, NH3, HCl, etc., are available as options)
    Dimensions and weight L 28.7 in (730 mm) ×
    W 9.5 in (240 mm) ×
    H 10.0 in (253 mm),
    11 lbs (5 kg)

 

Meso 112/222

INTRODUCTION

  • The AMI-Meso112/222 Series is engineered for high-precision surface area and pore size characterization of powdered materials. This series comprises two models, Meso 112 and Meso 222, both integrated with 1000 torr pressure transducers at each analysis station for accurate BET surface area determination and mesopore size distribution analysis.
  • Each analysis port is equipped with an in-situ degassing module capable of heating samples up to 400°C, ensuring efficient removal of adsorbed contaminants prior to analysis. This in-situ degassing eliminates the risk of contamination associated with sample transfer. Additionally, when multiple stations are utilized, each operates independently, allowing for simultaneous yet discrete analyses of different samples.
    • Structural distribution diagram of Meso 222

KEY FEATURES

  • Module Design for Minimal Dead Volume
  • The internal gas path design of the instrument adopts a unique integrated metal module design, which not only reduces the internal dead volume spacebut also helps mitigate possible leaks.
  • Saturated Vapor Pressure P0
  • An independent P₀ pressure transducer is configured at 133 kPa for P₀ value testing,enabling real-time P/P₀ measurement for more accurate and reliable test data. Alternatively, an atmospheric pressure input method can be used to determine P₀.
  • Datasheet
  • Independent analysis ports
  • With independent analysis ports, the system employs a unique vacuum control logic that allows each station to operate without disruption, even when using a single mechanical pump or pump group.This enables simultaneous, independent experiments, meeting diverse adsorbent testing needs while ensuring high efficiency.
  • Liquid Nitrogen Dewar
  • The use of 1 L Dewar flasks in conjunction with a sealed cover ensures a stable thermal profile along the entire length of both the sample tubes and P₀ tubes throughout the testing process.
  • Sample Preparation
  • Equipped with two in-situ degassing ports, enabling simultaneous degassing and analysis. Each port offers independent temperature control from ambient to 400°C, ensuring precise sample preparation.
  • High Accuracy Pressure Transducers
  • Equipped with 1000 torr pressure transducers, the Meso Series enables precise physical adsorption analysis, achieving a partial pressure (P/P₀) as low as 10 -² for nitrogen (N₂) at 77 K.
  • Datasheet
  • Optimized Manifold Contamination Control
  • This system features a multi-channel, adjustable, and parallel vacuum design with segmented vacuum control. This setup effectively prevents samples from being drawn up into the analyzer therefore preventing manifold contamination.
  • Thermal Stabilization
  • A core rod in the sample tube reduces deadvolume and stabilizes the cold free space coefficient, while an iso-thermal jacket maintains a constant thermal profile along the tube. Additionally, automatic helium correction ensures precise calibration for any powder or particulate material, minimizing temperature- related deviations during analysis.

SOFTWARE

  • PAS Software is an intelligent solution for operation control, data acquisition, calculation, analysis, and report generation on the Windows platform. It communicates with the host via the LAN port and can remotely control multiple instruments simultaneously.
  • PAS Software adopts a unique intake control method, optimizing pressure in the adsorption and desorption processes through a six-stage setting, which improves testing efficiency.
  • Datasheet
  • Changes in pressure and temperature inside the manifold can be directly observed in the test interface, providing convenience for sample testing and instrument maintenance. The current state of analyzer can be intuitively understood with the indicator light and event bar.
  • Each adsorption equilibrium process is dynamically displayed on the test interface. Adsorption characteristics of the sample can be easily understood.
  • A clear and concise report setting interface, including the following:
  • Adsorption and desorption isotherms
  • Single-/Multipoint BET surface area
  • Langmuir surface area
  • STSA-surface area
  • Pore size distribution according to BJH
  • T-plot
  • Dubinin-Radushkevich
  • Horvath-Kawazoe
  • Saito-Foley

TYPICAL ANALYSIS RESULTS

  • The specific surface area test results of iron ore powder are presented in the figure below. As a material with very small specific surface area, the repeatability error is only 0.0015 m2/g in the test results.
  • Datasheet
  • Datasheet
  • Analysis value of pore size distribution in activated carbon materials as follows:
  • Datasheet
  • Datasheet

SPECIFICATIONS

Model AMI-Meso 112 AMI-Meso 222
Analysis Ports 2 2
P0 Transducer 2 2
AnalysisPressure
Transducer
1 2
Accuracy PTs 1000 torr
Pump 1 Mechanical pump (ultimate vacuum 10-2 Pa);
P/P0 10-4- 0.998
Surface Area ≥ 0.0005 m2/g, test repeatability: RSD ≤ 1.0%
Pore Size 0.35-500 nm, test repeatability: ≤0.2 nm
Pore Volume ≥ 0.0001 cm3/g
Degassing Ports 2 in-situ
Adsorbates N2, CO2, Ar, Kr, H2, O2, CO, CH2, etc.
Cold Trap 1
Volume and Weight L 34.5 in (870 mm) × W 22.5 in (570 mm) × H 35.0 in (890 mm), 188 lbs (85 kg)
Power Requirements 110 or 200-240 VAC, 50/60 Hz, maximum power 300 W

APPLICATIONS

Applied Field Typical Materials Details
Material Research Ceramic powder, metal powder, nanotube According to surface area value of nanotube, hydrogen storage capacity can be predicted.
Chemical Engineering Carbon black, amorphous silica, zinc oxide, titanium dioxide Introduction of carbon black in rubber matrix can improve mechanical properties of rubber products. Surface area of carbon black is one of the important factors affecting the reinforcement performance of rubber products.
New Energy Lithium cobalt, lithium manganate Increasing surface area of electrode can improve Electrochemical reaction rate and promote iron exchange in negative electrode.
Catalytic Technologies Active alumina oxide, molecular sieve, zeolite Active surface area and pore structure influence reaction rate.

 

Prep Series

Prep 8A- VACUUM DEGASSER

  • The Prep 8A features two independent working modules, each with four degassing ports, allowing simultaneous preparation of up to eight samples. Each module operates with independent temperature and time controls, enabling flexible and parallel sample degassing.
  • A multi-stage vacuum pumping system, regulated by an internal pressure transducer, prevents sample elutriation, controls switching pressure, regulates nitrogen backfill pressure, and maintains precise pressure control during furnace descent. Programmable temperature ramping and a built-in cooling fan ensure efficient, precise, and controlled thermal treatment.
  • The system is operated via a 7-inch touchscreen interface with automatic parameter memory, streamlining operation and enhancing usability.
  • Use-Case:
  • High-capacity vacuum degasser with vertical configuration; ideal for labs prioritizing throughput, thermal uniformity, and complete automation.
  • Prep 8A
  • Model Prep 8A
    Temperature RT-400°C

    Control accuracy

    ±1°C
    Degassing port 8
    Pump 1 mechanical pump
    Heating method Programmed temperature ramping (Optional)
    Dimensions and weight L 17.0 in (430 mm)
    W 16.0 in (405 mm)
    H 28.5 in (725 mm)
    80 lbs (36 kg)
Prep 8M-VACUUMDEGASSER
  • Prep 8M
  • ThePrep 8M vacuum degasser features a single working module with eight degassing ports, enabling the simultaneous preparation of up to eight samples under uniform thermal conditions. All stations operate at the same temperature, making it ideal for processing multiple samples consistently.
  • Designed for efficiency and ease of use, the Prep 8M allows quick disassembly of sample tubes, supports grouped programmed temperature ramping,and features a purge-assisted cooling function for rapid cooldown. Its anti-elutriation design ensures sample integrity throughout the vacuum degassing process.
  • Temperature is fully programmable to deliver consistent and precise thermal treatment, while vacuum and backfill are manually controlled, giving operators the flexibility to manage timing and sequencing based on specific sample requirements
  • Use-Case:
  • Compact benchtop vacuum degasser with semi-automated functionality suited for space-constrained labs needing 8-port capacity.
  • Model Prep 8M
    Temperature RT-400°C

    Control accuracy

    ±1°C
    Degassing port 8
    Pump 1 mechanical pump
    Heating method Programmed
    Dimensions and weight L 15.5 in (395 mm)
    W 18.0 in (455 mm)
    H 14.0 in (358 mm)
    66 lbs (30 kg)

Prep 4M-VACUUM DEGASSER

  • ThePrep 4M vacuum degasser features four independent degassing stations, each with individually adjustable temperature and time parameters. This allows for the simultaneous preparation of multiple samples under different conditions, making it ideal for laboratories handling diverse materials.
  • Designed to maintain sample integrity, the system includes an anti-elutriation design to prevent particle loss during evacuation.It also supports optional programmable temperature ramping for controlled and repeatable heating cycles. Vacuum and nitrogen backfill are manually controlled, giving operators the flexibility to manage process timing based on specific sample requirements.
  • ThePrep 4M offers a compact and versatile solution for reliable sample pretreatment in surface area and gas adsorption analyses.
  • Use-Case:
  • Economical 4-port vacuum degasser for low-to-mid throughput needs; temperature ramping available as an option.
  • Prep 4M
  • Model Prep 4M
    Temperature RT-400°C

    Control accuracy

    ±1°C
    Degassing port 4
    Pump 1 mechanical pump
    (Ultimate vacuum 10-2 Pa, optional)
    Heating method Programmed temperature ramping (Optional)
    Dimensions and weight L 16.0 in (410 mm)
    W 14.5 in (361 mm)
    H 27.6 in (702 mm)
    55 lbs (25 kg)

Prep 8F –FLOW DEGASSER

  • Prep 8F
  • The Prep 8F is a versatile, high-throughput degassing system featuring two independent working units, each with four degassing ports, allowing the simultaneous preparation of up to eight samples. Each unit offers independent control of degassing temperature and time, providing flexibility for handling different sample types.
  • Designed for dynamic(flow) degassing, the system ensures efficient and uniform sample preparation without the use of vacuum. A programmable temperature ramping function enables controlled heating, while a built-in furnace fan facilitates rapid cooling between runs.
  • Operation is streamlined through a 7-inch integrated touchscreen with an intuitive interface and automatic parameter memory, making the Prep 8F an ideal solution for high-throughput sample pretreatment in surface area and gas adsorption analysis
  • Use-Case:
  • Flow-based degasser with 8 ports;designed for applications where vacuum degassing is not preferred or feasible.
  • Model Prep 8F
    Temperature RT-400°C

    Control accuracy

    ±1°C
    Degassing port 8
    Pump 1 mechanical pump
    Heating method Programmed temperature ramping (Optional)
    Dimensions and weight L 27.0 in (680 mm)
    W 16.0 in (404 mm)
    H 15.7 in (400 mm)
    70 lbs (32 kg)

 

Meso 400

INTRODUCTION

  • The AMI-Meso 400 is a compact, high-performance sorption analyzer designed for the precise characterization of mesoporous and macroporous materials. Equipped with four fully independent analysis stations, it enables the determination of BET surface area, total pore volume, and pore size distribution with maximum efficiency.
  • Each analysis station features an individual dosing volume, allowing fully autonomous operation with independent programming and initiation at any time—eliminating downtime between analyses. This design ensures highly reproducible results and optimized throughput.
  • The AMI-Meso 400 supports a wide range of non-corrosive adsorptive gases, including N2, CO2, Ar, Kr, H2, O2, CO, NH₃, and CH4, providing exceptional flexibility for various research and industrial applications. Additionally, all four stations function as in-situ degassing units, enabling efficient sample preparation within the same system.

KEY FEATURES

  • Module Design for Minimal Dead Volume
  • The internal gas path design of the instrument adopts a unique integrated metal module design, which not only reduces the internal dead volume spacebut also helps mitigate possible leaks.
  • Saturated Vapor Pressure P0
  • An independent P0 pressure transducer is configured at 133 kPa for P0 value testing,enabling real-time P/P0 measurement for more accurate and reliable test data. Alternatively, an atmospheric pressure input method can be used to determine P0.
  • Datasheet
  • Independent analysis ports
  • With independent analysis ports, the system employs a unique vacuum control logic that allows each station to operate without disruption, even when using a single mechanical pump or pump group. This enables simultaneous, independent experiments, meeting diverse adsorbent testing needs while ensuring high efficiency.
  • Thermal Stabilization
  • A core rod in the sample tube reduces deadvolume and stabilizes the cold free space coefficient, while an iso-thermal jacket maintains a constant thermal profile along the tube. Additionally, automatic helium correction ensures precise calibration for any powder or particulate material, minimizing temperature-related deviations during analysis.
  • High Accuracy Pressure Transducers
  • Equipped with 1000 torr pressure transducers, the Meso Series enables precise physical adsorption analysis, achieving a partial pressure (P/P0) as low as 10-2 for nitrogen (N2) at 77 K.
  • Datasheet
  • Optimized Manifold Contamination Control
  • This system features a multi-channel, adjustable, and parallel vacuum design with segmented vacuum control. This setup effectively prevents samples from being drawn up into the analyzer therefore preventing manifold contamination.
  • Liquid Nitrogen Dewar
  • The use of 1 L Dewar flasks in conjunction with a sealed cover ensures a stable thermal profile along the entire length of both the sample tubes and P0 tubes throughout the testing process.
  • Sample Preparation
  • Equipped with four in-situ degassing ports, enabling simultaneous degassing and analysis. Each port offers independent temperature control from ambient to 400°C, ensuring precise sample preparation.

SOFTWARE

  • PAS Software is an intelligent solution for operation control, data acquisition, calculation, analysis, and report generation on the Windows platform. It communicates with the host via the LAN port and can remotely control multiple instruments simultaneously.
  • PAS Software adopts a unique intake control method, optimizing pressure in the adsorption and desorption processes through a six-stage setting, which improves testing efficiency.
  • Datasheet
  • Changes in pressure and temperature inside the manifold can be directly observed in the test interface, providing convenience for sample testing and instrument maintenance. The current state of analyzer can be intuitively understood with the indicator light and event bar.
  • Each adsorption equilibrium process is dynamically displayed on the test interface. Adsorption characteristics of the sample can be easily understood.
  • A clear and concise report setting interface, including the following:
  • Adsorption and desorption isotherms
  • Single-/Multipoint BET surface area
  • Langmuir surface area
  • STSA-surface area
  • Pore size distribution according to BJH
  • T-plot
  • Dubinin-Radushkevich
  • Horvath-Kawazoe
  • Saito-Foley

TYPICAL ANALYSIS RESULTS

  • The specific surface area test results for iron ore powder are shown in the figure below. As a material with an inherently low specific surface area, the repeatability error in the measurements is only 0.0015 m²/g, demonstrating high testing precision.
  • Datasheet
  • Datasheet
  • Analysis of pore size distribution of activated carbon materials by NLDFT.
  • Datasheet
  • Datasheet
  • Adsorption and Desorption Isotherms of typical macroporous material - silica.
  • Datasheet
  • Datasheet

APPLICATIONS

Applied Field Typical Materials Details
Material Research Ceramic powder, metal powder, nanotubes According to the surface area value of the nanotube, hydrogen storage capacity can be predicted.
Chemical Engineering Carbon black, amorphous silica, zinc oxide, titanium dioxide Introduction of carbon black in rubber matrix can improve mechanical properties of rubber products. Surface area of carbon black is one of the important factors affecting the reinforcement performance of rubber products.
New Energy Lithium cobalt, lithium manganate Increasing the surface area of the electrode can improve the Electrochemical reaction rate and promote iron exchange in the negative electrode.
Catalytic Technologies Active alumina oxide, molecular sieve, zeolite Active surface area and pore structure influence reaction rate.

SPECIFICATIONS

Model AMI Meso 400
Analysis Ports 4
P0 Transducer 4
Analysis Pressure Transducer 4
Accuracy Pressure Transducers 1000 torr
Pump 1 mechanical pumps(ultimate vacuum10-2 Pa)
P/P0 10-4-0.998
Surface Area ≥0.0005 m2/g,test repeatability:RSD≤1.0%
Pore Size

0.35-500 nm,test repeatability:≤0.02 nm

Pore Volume ≥0.0001 cm3/g
Degassing Ports 4 in-situ
Adsorbates N2, Ar, Kr, H2, O2, CO2, CO, NH3, CH4, etc..
Cold Trap 1
Volume and Weight 38.5 in (980 mm) × W 25.0 in (630 mm) × H 38.5 in (976 mm), 176-199 lbs (90 kg)
Power Requirements 110  or 200-240VAC, 50/60Hz, maximum power300 W

Micro 100

INTRODUCTION

  • The AMI-Micro 100 Series is a high-precision physisorption instrument designed for the accurate determination of specific surface area and pore size distribution in a wide range of materials. The series is available in three distinct models—A, B, and C—each offering specialized capabilities to accommodate various analytical requirements (refer to the specification table for further details).
  • The Micro 100 C model is equipped with high-sensitivity 1 torr pressure transducers (with an optional 0.1 torr configuration) and a turbo molecular pump achieving an ultimate pressure of 10⁻⁸ Pa, ensuring exceptional accuracy in the characterization of microporous structures. Furthermore, all analysis stations incorporate in-situ sample preparation, effectively minimizing contamination and enhancing measurement reliability.
  • Engineered for advanced materials research, the AMI-Micro 100 Series is particularly well-suited for the characterization of microporous materials, including metal-organic frameworks (MOFs), molecular sieves, catalysts, activated carbon, and other porous substances, providing precise and reproducible gas adsorption analysis.
  • Instrument Structural Layout of AMI-Micro 100 Series

FEATURES

  • Module Design for Minimal Dead Volume
  • The internal gas path design of the instrument adopts a unique integrated metal module design, which not only reduces the internal dead volume space but also lowers the system leakage rate.
  • Saturated Vapor Pressure P0
  • An independent P₀ pressure transducer is configured at 133 kPa for P₀ value testing, enabling real-time P/P₀ measurement for more accurate and reliable test data. Alternatively, an atmospheric pressure input method can be used to determine P₀.
  • Datasheet
  • Multiple Degassing Stations for Sample Preparation
  • Equipped with two (2) integrated degassing ports and two (2) in-situ degassing ports. Each port offers independent temperature control from ambient to 400°C, ensuring precise sample preparation. In-situ degassing enhances microporous material analysis by providing superior efficiency over ex-situ methods.
  • High-Precision Micropore Distribution Analysis (Micro 100C)
  • Utilizes advanced micropore models, including the Horvath-Kawazoe (HK) and Saito-Foley (SF) methods,to accurately determine pore size distribution. Ensures an aperture deviation of less than 0.02 nm, providing precise characterization of microporous materials in gas
    adsorption studies.
  • Thermal Stabilization
  • A core rod in the sample tube reduces dead volume and stabilizes the cold free space coefficient, while an iso-thermal jacket maintains a constant thermal profile along the tube. Additionally, automatic helium correction ensures precise calibration for any powder or particulate material, minimizing temperature- related deviations during analysis.
  • Customizable Selection of Pressure Transducers
  • Depending on the model, the AMI-Micro 100 Series offers various quantities and types of pressure transducers. Among them, the Micro 100C, equipped with a 1 torr transducer (selectable 0.1 Torr), enables a  partial pressure (P/P₀) of up to 10⁻⁸ (N₂/77 K) in
    physical adsorption analysis.
  • Datasheet
  • Optimized Manifold Contamination Control
  • This system features a multi-channel, adjustable, and parallel vacuum design with segmented vacuum control. This setup effectively prevents samples from being drawn up into the analyzer therefore preventing manifold contamination.
  • Turbo Molecular Pump
  • A Turbo Molecular pump is included on the Micro 100B and Micro 100C. Achieving ultimate pressures of 10⁻⁸ Pa, this system ensures a solid foundation for precise micropore analysis at ultra-low pressures.

SOFTWARE

  • PAS Software is an intelligent solution for operation control, data acquisition, calculation, analysis, and report generation on the Windows platform. It communicates with the host via the LAN port and can remotely control multiple instruments simultaneously.
  • PAS Software adopts a unique intake control method, optimizing pressure in the adsorption and desorption processes through a six-stage setting, which improves testing efficiency.
  • Datasheet
  • Changes in pressure and temperature inside the manifold can be directly observed in the test interface, providing convenience for sample testing and instrument maintenance. The current state of analyzer can be intuitively understood with the indicator light and event bar.
  • Each adsorption equilibrium process is dynamically displayed on the test interface. Adsorption characteristics of the sample can be easily understood.
  • A clear and concise report setting interface, including the following:
  • Adsorption and desorption isotherms
  • Single-/Multipoint BET surface area
  • Langmuir surface area
  • STSA-surface area
  • Pore size distribution according to BJH
  • T-plot
  • Dubinin-Radushkevich
  • Horvath-Kawazoe
  • Saito-Foley

TYPICAL ANALYSIS RESULTS

  • The specific surface area test results for iron ore powder are shown in the figure below. As a material with an inherently low specific surface area, the repeatability error in the measurements is only 0.0015 m²/g, demonstrating high testing precision.
  • Datasheet
  • Datasheet
  • Analysis of pore size distribution of activated carbon materials by NLDFT.
  • Datasheet
  • Datasheet
  • Analysis of pore size distribution of activated carbon materials by NLDFT.
  • Datasheet
  • Datasheet

SPECIFICATIONS

Specific Model 100A 100B 100C
Analysis Ports 2 2 2
P0 Transducer 2 2 2
Analysis Pressure
Transducer
1 2 3
Accuracy PTs 1000 torr 1000 torr, 10 torr 1000torr, 10 torr, 1(0.1) torr
Testing Mode Sequential
Adsorbates N2, Ar, Kr, H2, O2, CO2, CO, NH3, CH4, etc.
Pump 2 mechanical pumps(ultimate vacuum 10-2Pa): 1 analysis,1 degas; 2 mechanica lpumps(ultimatevacuum 10-2 Pa): 1 analysis, 1 degas; 1 turbo molecular pump (ultimate vacuum 10-8 Pa);
P/P0 10-4-0.998 10-8-0.998
Surface Area ≥0.0005 m2/g,test repeatability:RSD≤1.0%
Cold Trap 1
Pore Size 0.35-500 nm, test repeatability: ≤0.02 nm
Pore Volume ≥ 0.0001 cm3/g
Degassing Ports 2 in-situ;2 ex-situ;
Volumeand Weight L34.5 in (870 mm) × W 22.5 in (570 mm) × H35.0 in (890 mm),176-198 lbs. (80-90 kg)
Power Requirements 110 or 240 VAC, 50/60 Hz, maximum power 300 W

 

Micro 200

INTRODUCTION

  • The AMI-Micro 200 Series is a high-precision physisorption instrument designed for the accurate determination of specific surface area and pore size distribution in a wide range of materials. The series is available in three distinct models—A, B, and C—each offering specialized capabilities to accommodate various analytical requirements (refer to the specification table for further details).
  • The Micro 200 C models can be equipped with high-sensitivity 1 torr pressure transducers (with an optional 0.1 torr configuration) and a turbo molecular pump achieving an ultimate pressure of 10⁻⁸ Pa, ensuring exceptional accuracy in the characterization of microporous structures. Furthermore, all analysis stations incorporate in-situ sample preparation, effectively minimizing contamination and enhancing measurement reliability.
  • Engineered for advanced materials research, the AMI-Micro 200 Series is particularly well-suited for the characterization of microporous materials, including metal-organic frameworks (MOFs), molecular sieves, catalysts, activated carbon, and other porous substances, providing precise and reproducible gas adsorption analysis.
    • Datasheet
    • Instrument Structural Layout of AMI-Micro 200 Series

FEATURES

  • Module Design for Minimal Dead Volume
  • The internal gas path design of the instrument adopts a unique integrated metal module design, which not only reduces the internal dead volume space but also lowers the system leakage rate.
  • Saturated Vapor Pressure P0
  • An independent P₀ pressure transducer is configured at 133 kPa for P₀ value testing, enabling real-time P/P₀ measurement for more accurate and reliable test data. Alternatively, an atmospheric pressure input method can be used
    to determine P₀.
  • Datasheet
  • Independent analysis ports
  • With independent analysis ports, the system employs a unique vacuum control logic that allows each station to operate without disruption, even when using a single mechanical pump or pump group. This enables simultaneous, independent experiments, meeting diverse adsorbent testing needs while ensuring high efficiency.
  • High-Precision Micropore Distribution Analysis (Micro 200 B and C)
  • Utilizes advanced micropore models, including the Horvath-Kawazoe (HK) and Saito-Foley (SF) methods,to accurately determine pore size distribution. Ensures an aperture deviation of less than 0.02 nm, providing precise characterization of microporous materials in gas adsorption studies.
  • Thermal Stabilization
  • A core rod in the sample tube reduces dead volume and stabilizes the cold free space coefficient, while an iso-thermal jacket maintains a constant thermal profile along the tube. Additionally, automatic helium correction ensures precise calibration for any powder or particulate material, minimizing temperature- related deviations during analysis.
  • Customizable Selection of Pressure Transducers
  • Depending on the model, the AMI-Micro 200 Series offers various quantities and types of pressure transducers. Among them, the Micro 200 B and C, equipped with a 1 Torr transducer (selectable 0.1 Torr), enables a partial pressure (P/P0) of up to 10-8(N2/77 K) in physical adsorption analysis.
  • Datasheet
  • Optimized Manifold Contamination Control
  • This system features a multi-channel, adjustable, and parallel vacuum design with segmented vacuum control. This setup effectively prevents samples from being drawn up into the analyzer therefore preventing manifold contamination.
  • Turbo Molecular Pump
  • A Turbo Molecular pump is included on the Micro 200B and Micro 200C. Achieving ultimate pressures of 10⁻⁸ Pa, this system ensures a solid foundation for precise micropore analysis at ultra-low pressures.
  • Multiple Degassing Stations for Sample Preparation
  • Equipped with two (2) integrated degassing ports and two (2) in-situ degassing ports. Each port offers independent temperature control from ambient to 400°C, ensuring precise sample preparation. In-situ degassing enhances microporous material analysis by providing superior efficiency over ex-situ methods.

SOFTWARE

  • PAS Software is an intelligent solution for operation control, data acquisition, calculation, analysis, and report generation on the Windows platform. It communicates with the host via the LAN port and can remotely control multiple instruments simultaneously.
  • PAS Software adopts a unique intake control method, optimizing pressure in the adsorption and desorption processes through a six-stage setting, which improves testing efficiency.
  • Datasheet
  • Changes in pressure and temperature inside the manifold can be directly observed in the test interface, providing convenience for sample testing and instrument maintenance. The current state of analyzer can be intuitively understood with the indicator light and event bar.
  • Each adsorption equilibrium process is dynamically displayed on the test interface. Adsorption characteristics of the sample can be easily understood.
  • A clear and concise report setting interface, including the following:
  • Adsorption and desorption isotherms
  • Single-/Multipoint BET surface area
  • Langmuir surface area
  • STSA-surface area
  • Pore size distribution according to BJH
  • T-plot
  • Dubinin-Radushkevich
  • Horvath-Kawazoe
  • Saito-Foley

TYPICAL ANALYSIS RESULTS

  • The specific surface area test results for iron ore powder are shown in the figure below. As a material with an inherently low specific surface area, the repeatability error in the measurements is only 0.0015 m²/g, demonstrating high testing precision.
  • Datasheet
  • Datasheet
  • Analysis of pore size distribution of activated carbon materials by NLDFT.
  • Datasheet
  • Datasheet
  •  Adsorption and Desorption Isotherms of typical macroporous material - silica.
  • Datasheet
  • Datasheet

SPECIFICATIONS

Specific Model 200A 200B 200C
Analysis Ports 2 2 2
P0 Transducer 2 2 2
Analysis Pressure
Transducer
2 4 6
Accuracy PTs Port 1 1000 torr 1000 torr, 10 torr, 1(0.1) torr 1000 torr, 10 torr, 1(0.1) torr
Port 2 1000 torr 1000 torr 1000 torr, 10 torr, 1(0.1) torr
Adsorbates N2, Ar, Kr, H2, O2, CO2, CO, NH3, CH4, etc.
Pump 2 mechanical pumps (ultimate
vacuum 10-2 Pa): 1 analysis, 1 degas;
2 mechanical pumps (ultimate vacuum 10-2 Pa):1 analysis, 1 degas;
1 turbo molecular pump (ultimate vacuum 10-8 Pa);
P/P0 10-4-0.998 10-8-0.998
Surface Area ≥0.0005 m2/g,test repeatability:RSD≤1.0%
Cold Trap 1
Pore Size 0.35-500 nm, test repeatability: ≤0.02 nm
Pore Volume ≥ 0.0001 cm3/g
Degassing Ports 2 in-situ;2 ex-situ;
Volumeand Weight L34.5 in (870 mm) × W 22.5 in (570 mm) × H35.0 in (890 mm),176-198 lbs. (80-90 kg)
Power Requirements 110 V or 240 VAC, 50/60 Hz, maximum power 300 W

 

Micro 300

INTRODUCTION

  • The AMI-Micro 300 Series is a high-precision physisorption instrument designed for specific surface area and pore size analysis of various materials. It is equipped with three independently operating analysis ports, allowing different adsorbate gases to be configured and tested simultaneously. Based on functional capabilities, the series is categorized into three models: A, B, and C (see the specification table for additional details). Each analysis station features a dedicated dosing manifold to optimize analysis time and ensure precise gas dosing.
  • The Micro 300 B and C models are equipped with a 1 torr or 0.1 torr high-sensitivity pressure transducers and a turbo molecular pump with an ultimate pressure of 10-8 Pa, ensuring precise measurements of microporous structures. Furthermore, all three analysis stations support in-situ sample preparation, minimizing the risk of contamination. This instrument is particularly well-suited for the characterization of microporous materials, including MOFs, molecular sieves, catalysts, activated carbon, and other porous substances.
    • Instrument Structural Layout of AMI-Micro 300 Series

FEATURES

  • Module Design for Minimal Dead Volume
  • The internal gas path design of the instrument adopts a unique integrated metal module design, which not only reduces the internal dead volume space but also lowers the system leakage rate.
  • Saturated Vapor Pressure P0
  • An independent P0 pressure transducer is configured at 133 kPa for P₀ value testing, enabling real-time P/P0 measurement for more accurate and reliable test data. Alternatively, an atmospheric pressure input method can be used to determine P₀.
  • Datasheet
  • Independent analysis ports
  • With independent analysis ports, the system employs a unique vacuum control logic that allows each station to operate without disruption, even when using a single mechanical pump or pump group. This enables simultaneous, independent experiments, meeting diverse adsorbent testing needs while ensuring high efficiency.
  • High-Precision Micropore Distribution Analysis
  • Utilizes advanced micropore models, including the Horvath-Kawazoe (HK) and Saito-Foley (SF) methods, to accurately determine pore size distribution. Ensures an aperture deviation of less than 0.02 nm, providing precise characterization of microporous materials in gas
    adsorption studies.
  • Thermal Stabilization
  • A core rod in the sample tube reduces dead volume and stabilizes the cold free space coefficient, while an iso-thermal jacket maintains a constant thermal profile along the tube.
    Additionally, automatic helium correction ensures precise calibration for any powder or particulate material, minimizing temperature- related deviations during analysis.
  • Customizable Selection of Pressure Transducers
  • Depending on the model, the AMI-Micro 300 Series offers various quantities and types of pressure transducers. Among them, the Micro 300C, equipped with a 1 torr transducer (selectable 0.1 Torr), enables a partial pressure (P/P0) of up to 10-7 – 10-8 (N2/77 K) in physical adsorption analysis.
  • Datasheet
  • Optimized ManifoldContamination Control
  • This system features a multi-channel, adjustable, and parallel vacuum design with segmented vacuum control. This setup effectively prevents samples from being drawn up into the analyzer therefore preventing manifold contamination.
  • Turbo Molecular Pump
  • A Turbo Molecular pump is included on the Micro 300B and Micro 300C. Achieving ultimate pressures of 10-8 Pa, this system ensures a solid foundation for precise micropore analysis at ultra-low pressures.
  • In-situ Degassing Ports
  • Equipped with three in-situ degassing ports, enabling simultaneous degassing and analysis. Each port offers independent temperature control from ambient to 400°C, ensuring precise sample preparation. In-situ degassing enhances microporous material analysis by providing superior efficiency over ex-situ methods.

SOFTWARE

  • PAS Software is an intelligent solution for operation control, data acquisition, calculation, analysis, and report generation on the Windows platform. It communicates with the host via the LAN port and can remotely control multiple instruments simultaneously.
  • PAS Software adopts a unique intake control method, optimizing pressure in the adsorption and desorption processes through a six-stage setting, which improves testing efficiency.
  • Datasheet
  • Changes in pressure and temperature inside the manifold can be directly observed in the test interface, providing convenience for sample testing and instrument maintenance. The current state of analyzer can be intuitively understood with the indicator light and event bar.
  • Each adsorption equilibrium process is dynamically displayed on the test interface. Adsorption characteristics of the sample can be easily understood.
  • A clear and concise report setting interface, including the following:
  • Adsorption and desorption isotherms
  • Single-/Multipoint BET surface area
  • Langmuir surface area
  • STSA-surface area
  • Pore size distribution according to BJH
  • T-plot
  • Dubinin-Radushkevich
  • Horvath-Kawazoe
  • Saito-Foley

TYPICAL ANALYSIS RESULTS

  • The specific surface area test results for iron ore powder are shown in the figure below. As a material with an inherently low specific surface area, the repeatability error in the measurements is only 0.0015 m²/g, demonstrating high testing precision.
  • Datasheet
  • Datasheet
  • Analysis of pore size distribution of activated carbon materials by NLDFT.
  • Datasheet
  • Datasheet
  • Analysis of pore size distribution of activated carbon materials by NLDFT.
  • Datasheet
  • Datasheet

APPLICATIONS

Applied Field Typical Materials Details
Material Research Ceramic powder, metal powder, nanotube According to surface area value of nanotube, hydrogen storage capacity can be predicted.
Chemical Engineering Carbon black, amorphous silica, zinc oxide, titanium dioxide Introduction of carbon black in rubber matrix can improve mechanical properties of rubber products. Surface area of carbon black is one of the important factors affecting the reinforcement performance of rubber products.
New Energy Lithium cobalt, lithium manganate Increasing surface area of electrode can improve Electrochemical reaction rate and promote iron exchange in negative electrode.
Catalytic Technologies Active alumina oxide, molecular sieve, zeolite Active surface area and pore structure influence reaction rate.

SPECIFICATIONS

Specific Model AMI-Micro 300 Series
Specific Model 300A 300B 300C
Analysis Ports 3 3 3
P0 Transducer 3 3 3
Analysis Pressure Transducer 3 5 9
Accuracy PTs Port 1 1000 torr 1000torr, 10 torr, 1(0.1) torr 1000 torr,10 torr,1(0.1) torr
Port 2 1000 torr 1000 torr 1000 torr,10 torr,1(0.1) torr
Port 3 1000 torr 1000 torr 1000 torr,10 torr,1(0.1) torr
Adsorbates N2, Ar, Kr, H2, O2, CO2, CO, NH3, CH4, etc.
Pump 1 mechanical Pump (ultimate vacuum 10-2 Pa) 1 mechanical Pump(ultimate vacuum10-2 Pa);
1 turbo Molecular Pump (ultimate vacuum10-8 Pa);
Cold Trap 1
P/P0 10-4-0.998 10-8-0.998
Surface Area ≥0.0005 m2/g,testrepeatability:RSD≤1.0%
Pore Size 0.35-500 nm, test repeatability: ≤0.02 nm
Pore Volume ≥ 0.0001 cm3/g
Degassing Ports 3in-situ
Volume and Weight L34.5 in (870 mm) × W 22.5 in (570 mm) × H35.0 in (890 mm),176-198 lbs. (80-90 kg)
Power Requirements 110 or 200-240 VAC,50/60 Hz, maximum power 300 W

Densi 100

INTRODUCTION

  • True density is a critical physical property for solid materials—especially powders—affecting everything from product performance to quality control. True density reflects a material’s purity and structural compactness, both of which play a direct role in its end-use properties.
  • Traditionally, density has been measured using Archimedes' water displacement method. However, this approach suffers from manual error, liquid drainage issues, and poor repeatability. In response, the International Organization for Standardization (ISO) adopted the gas displacement method (ISO 12154) as the official standard for true density measurement in 2014.
  • The Densi 100 True Density Analyzer quickly and accurately determines the true volume and true density of a wide range of solid materials, including powders, granules, and solid blocks. With a sample chamber volume range of 1 cm³ to 100 cm³, the system accommodates both small and large samples. Each analysis is completed in approximately 3 minutes, delivering reliable results without compromising accuracy.
  • √ TEST GAS: Helium or Nitrogen
    √ Characteristic: Non-Destructive
    √ Resolution: 0.0001 g/ml
    √ Repeatability: +/- 1%
  • Densi-100 Touch Screen

FEATURES

  • Integrated Testing Module
  • The Densi 100 combines the sample chamber,expansion chamber,pressuresensor,and control valve into a single,compact unit,ensuring uniform system temperature and enhanced measurement stability.This integrated design delivers exceptional performance,achieving true density accuracy of up to ±0.03% and repeatability better than±0.02%,makingit ideal for both high-precision research and routine quality control applications.
  • Reference Material
  • The standard reference material used for calibration is made from nonexpanded alloy and is certified by the National Institute of Metrology, China. This ensures traceability and high confidence in measurement accuracy, with volume precision up to 10-4 cc.
  • Multiple Sample Chambers and Inserts
  • Various chamber and sample cell inserts are available, allowing users to optimize measurement accuracy and accommodate different sample volumes with precision and flexibility.
  • Density Measurement
  • The Densi 100 Automatic True Density Analyzer accurately measures the true density of powders within a pressure range of 1 to 1.3 bar.
  • Unique Design
  • The Densi 100 is equipped with a built-in processor and Windows-based operating system, enabling fully independent operation without requiring an external computer. Its intelligent self-diagnostic program automatically performs seal integrity verification, reducing operator errors and ensuring consistent, highquality test results.
  • Pressure Sensor
  • The Densi 100, equipped with a 2 bar (F.S.) pressure sensor, delivers highly stable and accurate true density measurements. The sensor’s nonlinearity is better than ±0.2%, ensuring precise pressure readings and reliable data capture throughout the testing process.

SOFTWARE

  • The Densi 100 offers an intuitive, fully automated testing process, completing measurements in approximately three minutes. Users can customize the number of repeat tests, while all test data is automatically recorded, saved in TXT format, and easily exported via USB. The system includes PC compatible software for generating and printing comprehensive standard test reports, ensuring seamless data management and documentation. To enhance versatility, the software features five built-in test modes—Pellets, Powder, Fine Powder, Foam, and Custom—allowing for quick selection based on sample type.
  • Graphical Testing Data
  • Tabular Cycle Data

SPECIFICATIONS

  • Model Densi 100
    Principle Gas displacement method
    Pre-Treatment Gas purge, Flow
    Pressure Accuracy 0-150 kPa (Gauge)
    0.03%
    Repeatability 0.02%
    Cell Volume Nominal: 100 ml or 10 ml
    Available inserts : 35 ml, 10 ml, 3.5 ml, 1 ml
    Calibration Method Automatic calibration
    Gases Helium or Nitrogen
    Testing Range 0.0001 g/cm3 to the infinity
    Dimensions and Weight L 15.0 in (380 mm) x W 11.0 in (280 mm) x H 11.0 in (280 mm) 22 lbs. (10kg)
    Power Requirement 110 or 240 VAC, 50/60 Hz