DSC 600

INTRODUCTION

  • The DSC 600 from Advanced Measurement Instruments (AMI) is the next generation of Differential Scanning Calorimeters (DSC), crafted to meet the evolving needs of professionals in materials research, chemical engineering, quality control, petrochemicals, and pharmaceuticals. Designed for precision, reliability, and affordability, the DSC 600 sets new standards in thermal analysis.
  • At the heart of the DSC 600 is its innovative heat flux plate, engineered to capture the smallest energy changes with unmatched sensitivity and accuracy. This powerful capability enables precise measurements across a broad spectrum of applications, including enthalpy, glass transition, heat of crystallization, purity determination, and heat capacity.
  • Equipped with an ultra-light furnace, the DSC 600 ensures excellent thermal conductivity and stability, delivering consistent performance across a wide temperature range. With a selection of specialized heat flux plates, it can be tailored to meet diverse testing needs,enhancing efficiency and flexibility in every lab.
  • Typical Applications
  • Melting Temperature
  • Crystallization Temperature
  • Heat of Chemical Reaction
  • Glass Transition Temperature
  • Specific Heat Capacity
  • Degree of Crystallinity
  • Degree of Cure
  • Oxidative Stability
  • Thermal Stability
  • Solid-State Phase Transition
  • Liquid Crystal Phase Transition
  • Aging of Materials
  • Polymorph
  • DSC 600

FEATURES

  • Precision
  • High-sensitivity heat flow sensor platform delivers calorimetric accuracy of ±0.1%. With four distinct heat flow sensor types available, it comprehensively meets the precise measurement needs of diverse materials, accommodating a wide range of experimental and application scenarios.
  • Featuring innovative furnace technology and unique sensor design, the system achieves exceptional baseline repeatability while offering low noise, high sensitivity, and outstanding resolution. This ensures the detection of even minute thermal changes that might otherwise be lost in noise.
  • Stability
  • The mineral-insulated furnace body design combines excellent thermal conductivity with corrosion resistance, while dual-PID temperature control ensures data accuracy and stability.
  • Advanced circumferential heating technology and a proprietary dual-PID control system guarantee precise adherence to programmed temperature profiles during both heating and cooling phases. With temperature control accuracy of ±0.01°C, the system significantly minimizes thermal fluctuations that could compromise experimental results.
  • Ease of Use
  • The intuitive software interface features streamlined UI and modular architecture, enabling effortless operation. Researchers can quickly master experimental setup, data analysis, and all critical workflows.
  • The maintenance optimized furnace design allows easy cleaning even after sample contamination during loading, significantly enhancing experimental efficiency while extending equipment service life.
  • High-Precision Heat Flow Sensor
  • The self-developed high-sensitivity heat flow sensor platform delivers low noise, high sensitivity, and exceptional resolution to reliably detect minute thermal variations that might otherwise be obscured by noise.
  • Four Types of Heat Flow Sensors
  • The DSC600 offers four types of heat flow sensor platforms: standard testing type, high-sensitivity type (for biopharmaceutical materials), corrosion-resistant type (for corrosive samples), and energetic materials type (for chemical reactions). These sensors meet the requirements of different application scenarios and sample types.
  • Precision Temperature Control
  • The system utilizes circumferential heating technology and a proprietary dual-PID control system to ensure exact adherence to programmed temperature curves during heating/cooling processes. With a temperature control accuracy of ±0.01°C, it effectively minimizes thermal fluctuations that could compromise experimental results.
  • Ultralight Mineral Furnace
  • The silver-constructed furnace body delivers exceptional thermal conductivity and stability, ensuring precise temperature control and rapid thermal response. The pure silver material effectively minimizes heat loss while enhancing analytical efficiency, achieving uniform heating/cooling across samples. Its superior corrosion resistance extends instrument service life, accommodating diverse experimental environments.
  • Automatic Gas Switching Control
  • The multi-channel gas inlet device enables automatic gas switching during experiments. This integrated unit combines four or six gas lines into a single module to meet the demands of frequent gas changes across different testing procedures.
  • Gas Preheating Function
  • The furnace incorporates heated gas lines at the inlet ports, enabling gas preheating before entering the sample chamber. This design stabilizes experimental conditions and enhances testing efficiency.
  • Three High-Efficiency Cooling Systems
  • The DSC 600 is equipped with three high-efficiency cooling systems, offering versatile refrigeration options: water bath cooling, mechanical refrigeration, and liquid nitrogen cooling.
  • The water bath cooling system regulates furnace temperatures from 10°C to 600°C, ideal for scenarios not requiring cryogenic conditions, such as polymer melting point and crystallization temperature analysis. The mechanical refrigeration system covers a temperature range of -90°C to 450°C, widely used in polymer material analysis, including glass transition studies, crystallization kinetics research, and conventional low-temperature testing applications.
  • The liquid nitrogen cooling system utilizes the endothermic properties of evaporating liquid nitrogen for rapid cooling, with a furnace temperature range of -150°C to 600°C. It is primarily employed for ultra-low temperature research, such as metal alloy phase transitions, superconducting material analysis, and rapid quenching experiments, including amorphous material preparation and fast cooling process studies.

SOFTWARE

  • Experiment Program Setup Interface
  • Standard Functions
  • · Glass transition analysis
    (2-point or 6-point method)
  • · Onset/peak temperature determination
  • · Peak integration
  • · Melting peak analysis
  • · Crystallinity measurement
  • · Data smoothing
  • · Baseline correction
  • Optional Functions
  • Specific Heat Capacity:
    The system rapidly determines specific heat values by testing samples alongside reference materials with known heat capacity (e.g., sapphire) under identical conditions.

SPECIFICATIONS

Temperature Range -150~600°C
Temperature Accuracy ±0.1°C
Temperature Precision ±0.01°C
Program Rate 0.1~200°C/min
Cooling Mode Water Cooling Refrigerated Cooling Liquid Nitrogen Cooling
Maximum Temperature 600°C 450°C 600°C
Minimum Temperature Ambient Temperature -40°C or -90°C -150°C
Calorimetric Accuracy ±0.1%
Noise 0.5 μw
Gas Nitrogen, Argon, Helium, Compressed air, Oxygen, etc.
Sampling Frequency 10 Hz
Weight 27 lbs.
Dimensions 17 in(W) × 17 in(D) × 9.5 in(H)
  Options
Gas Controller 4 Channel Automatic Gas Switching
Software Functions Specific Heat Capacity

MATERIALS

  • Thermoplastics
  • Thermosets
  • Rubbers
  • Catalysts
  • Phenolics
  • Pharmaceuticals
  • Chemicals
  • Coals and other fuels
  • Nuclear Research
  • Foods
  • Cosmetics
  • Explosives

APPLICATIONS

  • Cold Crystallization Behavior of PET
  • The crystal growth and degree of crystallization depend on the polymer type, cooling rate, or isothermal aging time. The calculation method for crystallization enthalpy is the same as that for melting enthalpy. Cold crystallization is the process of crystal growth during heating. This exothermic event precedes crystal melting.
  • Glass Transition Analysis
  • The glass transition temperature (Tg) of polymers refers to the temperature range at which they transition from a rigid "glassy" state to a flexible "rubbery" state, significantly affecting their usability, particularly in elastomers. Understanding Tg is crucial for quality control, process optimization, ensuring product performance, and maintaining material consistency.
  • Phase Transformation of Nickel-Titanium Alloys
  • The Af temperature refers to the phase transition temperature of nickel-titanium alloys, marking the transformation from the high-temperature phase (a-phase) to the low-temperature phase (f-phase). In the high-temperature phase, the crystal structure of nickel-titanium alloy exhibits a cubic system, while in the lowtemperature phase it transforms into a monoclinic system. This phase transition temperature change gives nickel-titanium alloys their shape memory properties. These shape memory characteristics enable important applications across various fields, such as medical devices, aerospace, and mechanical engineering.

ACCESSORIES

  • Crucibles
  • Crucibles serve as sample containers in thermal analysis measurements, effectively protecting sensors and preventing measurement contamination. The selection of crucible type is critical for result quality. We offer various crucible options to meet different testing requirements, ensuring accurate and reliable measurement results.
  • Pellet Press
  • The crucible pellet press elevates sample encapsulation to higher performance and convenience, suitable for routine and hermetic testing of various materials. The standard model is specifically designed for solid sample crucibles, while the universal model handles both solid and liquid sample crucibles, offering greater flexibility for your experiments.
  • Fully Automated Chiller
  • The fully automated recirculating bath enables precise continuous temperature control within the range of -10°C to 90°C. When coupled with the water-cooled DSC 600 system, it achieves rapid furnace cooling, significantly enhancing experimental efficiency.
  • Gas Selector Accessory
  • The gas selector supports one-button switching across multiple gases, accommodating up to 4 input ports. It simplifies valve disassembly and assembly when sampling different gases, effectively minimizing leakage risks associated with manual handling. Additionally, the instrument features an automatic purging process, ensuring efficient gas line purification and seamless, automated switching between gases.

PDSC

  • Pressure Differential Scanning Calorimeter
  • The Pressure Differential Scanning Calorimeter (PDSC) is capable of conducting calorimetric tests under both high and low-pressure conditions. In practical applications, many raw materials and finished products are processed or used under high temperature and high pressure, making it essential to understand their performance under these extreme conditions. While traditional calorime-ters are effective in characterizing the physical and chemical properties of materials, the PDSC extends this characterization to extreme pressure environments. It allows for an in-depth analysis of the heat flow changes during phase transitions and chemical reactions under high or low pressure.
  • In a sealed crucible, changes in internal pressure can cause DSC test results to differ from those obtained under atmospheric pressure. The PDSC enables precise pressure control, which allows researchers to investigate the effects of varying pressures on samples and uncover thermal behavior differences in different environments. For material research in extreme test conditions, the PDSC offers superior capabilities in characterizing heat changes during reaction processes.
  • At the core of the PDSC is a high-performance heat flow sensor platform, specifically designed to study minute energy changes and the relationship between energy, temperature, and pressure.
  • Temperature Range -150-600°C
    Maximum Pressure 1000 psi
    Program Rate 0.1-200°C/min
    Gas Nitrogen, Argon, Helium, Compressed air, Oxygen, etc.

AMI Thermal Analysis Series Products

  • Differential Scanning
    Calorimeter
    (DSC)
  • Thermogravimetric
    Analyzer
    (TGA)
  • Simultaneous Thermal
    Analyzer
    (STA)
  • Thermomechanical
    Analyzer
    (TMA)

 

TGA 1000/1200/1500

INTRODUCTION

  • The TGA Series combines research-grade capabilities with an accessible price point, delivering high-performance thermal analysis tools without compromising on quality. Equipped with advanced high-sensitivity microbalances and compact, state-of-the-art furnaces, these instruments provide unparalleled precision, drastically reduce buoyancy effects, and ensure superior temperature responsiveness.
  • Renowned for their reliability and versatility, the TGA Series instruments are trusted across a wide range of industries, including plastics, rubber, adhesives, fibers, pharmaceuticals,environmental energy, petrochemicals, and food science. These instruments meet critical customer needs by enabling the characterization and analysis of parameters such as material decomposition temperatures, mass loss percentages, component contents, and residual mass.
  • TGA 1000/1200/1500

FEATURES

  • Proprietary Microbalance
  • The proprietary TGA microbalance combines high sensitivity, low drift technology, and thermal insulation design to deliver exceptional weighing accuracy. With a resolution as precise as 0.1 μg, it is ideal for high-precision measurements of trace samples. The low-drift technology minimizes the impact of environmental factors, ensuring stable data even in long-duration experiments, while reducing errors caused by drift. Additionally, the thermal insulation design protects the balance from external temperature fluctuations, maintaining internal temperature stability and ensuring reliable results, even in conditions of rapid temperature change or high heat.
  • Miniature Furnace
  • The compact heating furnace is designed to significantly minimize gas buoyancy effects, ensuring that dynamic curve drift in TGA remains under 25 μg without requiring additional blank tests. Additionally, the furnace delivers a rapid temperature response, achieving heating rates of up to 300°C/min, which dramatically shortens experimental time and enhances overall work efficiency.
  • Precise Temperature Control
  • The advanced heating technology combined with a dual PID control system ensures precise adherence to the set temperature curve during both heating and cooling processes. With a temperature control accuracy of ±0.1°C, this system significantly reduces the influence of temperature fluctuations, delivering highly reliable experimental results.
  • Wide Temperature Range
  • Multiple furnace options are available to meet the specific temperature requirements of different materials. With a maximum temperature capability of up to 1500°C, these furnaces are designed to satisfy the rigorous demands of both experimental and industrial applications.
  • Furnace Auto-Lift System
  • The instrument is equipped with an automatic furnace lifting system, simplifying experimental operations and preventing equipment damage or safety incidents caused by improper manual handling.
  • Water Cooling System
  • The fully automated recirculating bath provides precise and continuous temperature control, which effectively and rapidly reduces the TGA furnace temperature, significantly shortening the experimental time.
  • Automatic Gas Switching Control
  • The gas selector supports one-button switching across multiple gases, accommodating up to 4 input ports. The device features an integrated design, consolidating four gas channels into a single module to meet the need for frequent gas switching during different testing processes.
  • Evolved Gas Analysis
  • TGA can be combined with other analytical instruments for online monitoring and qualitative analysis of evolved gases, such as mass spectrometers (MS) or Fourier-transform infrared spectrometers (FTIR).

SOFTWARE

  • Experiment Program Setup Interface
  • Standard Functions
  • · 2-point or 6-point mass loss analysis
  • · Peak temperature analysis
  • · Weight loss step analysis
  • · Mass loss initiation point
  • · Residual mass calculation
  • · 1st and 2nd derivative analysis
  • · Data smoothing
  • ·Baseline subtraction
  • Optional Functions
  • High-Resolution thermogravimetric analysis:
    Enables effective separation of overlapping mass loss regions, improving resolution, and quickly obtaining experimental data over a wide tempera-ture range.

MATERIALS

  • Petrochemical products
  • Coal and other fuels
  • Explosives
  • Cosmetics
  • Thermoplastic materials
  • Thermosetting materials
  • Rubber
  • Coatings
  • Elastomers
  • Polymers
  • Pharmaceuticals
  • Food Products
  • Catalysts
  • Chemicals
  • Asphalt
  • Ceramics

SPECIFICATIONS

Temperature Range RT-1000°C RT-1200°C RT-1500°C
Temperature Accuracy ±0.5°C
Temperature Precision ±0.1°C
Program Rate 0.1-300°C/min 0.1~60°C/min
Cooling Mode Water Cooling
Resolution 0.1 μg
Measuring Range ±200 mg
Dynamic Baseline Drift ≤ 25 μg (No blank background subtraction)
Isothermal Baseline Drift ≤5 μg/h
Repeatability ≤10 μg
Weight 44 lbs.
Dimensions 16.3 in(W) × 14 in(D) × 16.6 in(H)
  Options
Gas Controller 4 Channel Automatic Gas Switching
Evolved Gas Analysis MS,FTIR,etc.

APPLICATIONS

  • Typical Applications
  • Thermal Stability
  • Thermal Pyrolysis
  • Oxidation Reactions
  • Dehydration Process
  • Decomposition
  • Process Kinetics
  • Combustion Process
  • Moisture Content
  • Residue and Ash Content
  • Dynamic Baseline Drift
  • In a typical TGA test, the sample mass may increase due to the "buoyancy effect" of the gas. However, the design of the miniature heating furnace ensures that the drift of the dynamic thermogravimetric curve remains below 25 μg, eliminating the need for baseline curve subtraction.
  • Weight Loss Step Analysis
  • The analysis software enables clear observation of the weight loss ratio and corresponding temperatures at each stage of the process. For instance, the thermogravimetric curve of hydrated calcium oxalate demonstrates three distinct stages. In the first stage, bound water evaporates, producing water vapor and leaving behind calcium oxalate. In the second stage, calcium oxalate decomposes into calcium carbonate and carbon monoxide. Finally, in the third stage, calcium carbonate further breaks down into calcium oxide and carbon dioxide.
  • High-Resolution TGA
  • The high-resolution TGA technology intelligently adjusts the heating rate in response to the sample's decomposition rate,effectively separating overlapping mass loss regions and enhancing resolution. This enables the rapid collection of experimental data across a wide temperature range. The exceptional resolution achieved with this advanced technology is particularly beneficial for analyzing the mass loss curve in TGA and the first derivative signals (DTG), providing highly detailed and accurate results.

ACCESSORIES

  • Crucibles
  • Crucibles serve as sample containers in thermal analysis measurements, effectively protecting sensors and preventing measurement contamination. The selection of crucible type is critical for result quality. We offer various crucible options to meet different testing requirements, ensuring accurate and reliable measurement results.
  • Mass Spectrometer
  • The Online Gas Mass Spectrometer is a quadrupole mass spectrometer specifically designed for the efficient collection and analysis of TGA evolved gases, with a mass range of 1-300 amu. It offers sensitivity at the parts-per-billion (ppb) level, ensuring precise analysis of low-concentration gases.
  • Fully Automated Chiller
  • The fully automated recirculating bath enables precise continuous temperature control within the range of -10°C to 90°C. When coupled with the water-cooled DSC600 system, it achieves rapid furnace cooling, significantly enhancing experimental efficiency.
  • Gas Selector Accessory
  • The gas selector supports one-button switching across multiple gases, accommodating up to 4 input ports. It simplifies valve disassembly and assembly when sampling different gases, effectively minimizing leakage risks associated with manual handling. Additionally, the instrument features an automatic purging process, ensuring efficient gas line purification and seamless, automated switching between gases.

AMI Thermal Analysis Series Products

  • Differential Scanning Calorimeter(DSC)
  • The DSC is a device used to measure the energy changes absorbed or released by a sample during variations in time or temperature. The DSC sensor is a heat flow measurement platform employing specialized technology, designed to deliver exceptional performance and testing reliability. Examples of measurements conducted using DSC include enthalpy of melting, glass transition, crystallization, purity, and specific heat capacity.
  • Thermogravimetric Analyzer(TGA)
  • The TGA measures changes in the weight of a sample as a function of temperature or time. This product supports the editing of multiple program segments, allowing for the design of complex experiments involving heating, cooling,or isothermal conditions. It also features automatic gas switching during temperature ramps, while its vertical supension design ensures stable and accurate weight readings throughout the experiment. The TGA's micro-furnace provides rapid response to temperature changes and enables quick cooling between multiple experiments.
  • Simultaneous Thermal Analyzer(STA)
  • AMI introduces anew generation of high-performance STA, featuring a microbalance with 0.1 μg resolution, advanced control algorithms, and structural design. The STA is ideally suited for evolved gas analysis, capable of precisely capturing minute mass changes and thermal effects. It is also equipped with an atmosphere control system that provides specific gas environments, aiding in the simulation of real-world conditions. The STA is flexibly configurable to meet all your specific thermal analysis testing needs.
  • Thermomechanical Analyzer(TMA)
  • Thermal expansion is a primary cause of mechanical stress and electronic component failure. The TMA can accurately determine the glass transition temperature and stress relief points of materials, identify critical points that may lead to delamination, and ensure the stability of electronic performance. This new thermomechanical analyzer features a simple and robust design, specifically tailored for measuring the expansion of small components and the low expansion rates of circuit boards and component materials.

 

STA 650 1000 1200 1500

INTRODUCTION

  • AMI is pleased to introduce its next-generation Simultaneous Thermal Analyzer (STA), a state-of-the-art instrument designed for advanced thermal analysis. Incorporating a 0.1-microgram balance resolution, sophisticated control algorithms, and an innovative hang-down design, this analyzer delivers exceptional precision and reliability in an affordable, high-performance system.
  • The STA Series enables simultaneous Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)/Differential Thermal Analysis (DTA) on a single sample within a single run. Built for reliability and precision, the STA delivers comprehensive thermal profiles without the need to run multiple experiments—saving you both time and sample material.
  • Engineered for quality control, routine testing, academic research, and industrial R&D, the STA Series combines robust construction with user-friendly intuitive software, offering a cost-effective solution for high-precision thermal analysis.
  • The STA is controlled by the Infinity Pro Thermal Analysis software. This unique Windows based software offers a very simple interface with all the features you need to analyze your thermal data.
  • STA Simultaneous Thermal Analyzer

MATERIALS

  • ● Polymers
  • ● Chemicals
  • ● Petrochemicals
  • ● Polymorphs
  • ● Superconductors
  • ● Ceramics
  • ● Glasses
  • ● Composites
  • ● Metals
  • ● Engineered alloys
  • ● Pharmaceuticals
  • ● Catalyst Research
  • ● Building Materials
  • ● Propellants
  • ● Explosives
  • ● Electronic Components
  • ● Coals & other fuels
  • ● Catalysts
  • ● Nuclear Science Materials
  • ● Food and Biomaterials

FEATURES

  • True Hang-Down Balance Design
  • Industry-leading stability, sensitivity, and long-term drift resistance for reliable and repeatable measurements without the need for buoyancy corrective experiments.
  • High Sensitivity Microbalance
  • Sub-microgram-level accuracy across a broad temperature range, providing confidence in your thermal and mass loss data.
  • 24-Bit Resolution
  • High-precision measurement of temperature, delta T, and weight with minimal noise and high digital fidelity.
  • Small Swept Volume Furnace Cup (7.5mL)
  • Enhances temperature uniformity and gas exchange efficiency.
  • Simultaneous TGA/DSC or DTA
  • Perform thermogravimetric and calorimetric analyses in a single run— ideal for decomposition, oxidation, and phase transitions.
  • Dual Purge Gas System
  • Separate channels for purge and protective gases allow for fine control of the experimental atmosphere.
  • Broad Temperature Range
  • Furnace operation up to 1500°C under inert, oxidizing, or reducing gas environments.
  • Motor-Driven Furnace Lift
  • Ensures automated, smooth movement of the furnace for consistent sample positioning.

OPTIONS

  • Evolved Gas Analysis (EGA) Compatibility
  • Interface with mass spectrometry (MS) or FTIR systems for evolved gas studies during thermal decomposition.
  • 4-Gas Selector System
  • Automates delivery of up to four different gases for programmable switching during analysis.
  • Sub-Ambient System (650°C Model)
  • Low-temperature furnace models support experiments starting below room temperature
  • High-Temperature Flexibility
  • Optional DSC-only high-temperature mode to allow DSC-only to 1,500°C
    Optional TGA-only high-capacity mode for larger or reactive samples

EXAMPLES

  • Barium Chloride
  • This is an example of a reference material that shows temperature and enthalpy accuracy. In addition, this represents a good example of a fused peak analysis.
  • Calcium Oxalate
  • Calcium Oxalate is an excellent demonstration material for both DSC and TGA. This sample was run in the presence of Oxygen. The first DSC peak has an associated weight loss and represents bound water.
  • STA data analysis

SPECIFICATIONS

  • Temperature -40°C-650°C Ambient to 1200°C Ambient to 1500°C
    Programmed Rate 0.1-100 °C/min 0.1-40 °C/min
    DSC Sensitivity <1 μW <4 μW
    TGA Range 400 mg
    TGA Readability 0.1 μg
    Thermocouple Type K Type R
    DSC/DTA mode Yes

TMA 800

INTRODUCTION

  • The TMA 800 is built on a proven vertical design that incorporates an advanced Oil Float Suspension System, delivering the stability and precision required for accurate measurement of thermal expansion, glass transition, and other thermomechanical properties across a wide range of materials.
  • Engineered for both performance and ease of use, the TMA 800 provides exceptional data quality for analyzing coefficients of thermal expansion (CTE), stress relaxation, and dimensional change. It is ideally suited for high-reliability applications in electronics, composites, advanced polymers, and more. With a wide operating temperature range from -90 °C to 800 °C and multiple test modes available, the TTMA 800 offers outstanding versatility to meet a broad range of application needs.
  • Thermal expansion is a primary cause of mechanical stress and failure in electronic components, PCB assemblies, and multilayer structures. Accurately determining the glass transition temperature—the point at which softening and stress relief begin—or the onset of delamination is critical to product development, performance, and reliability in thermal environments.
  • The TMA 800 is a rugged, easy-to-use system designed for both routine testing and advanced research. It features a motorized furnace lift for smooth, safe repositioning after loading, with integrated position sensors to ensure operator protection. Its all-metal furnace is built to deliver thousands of hours of failure- free performance, while its vertical geometry supports samples ranging from a few microns to over a centimeter tall—ideal for measuring both small components and low-expansion materials such as circuit boards.
  • Whether you're characterizing high-performance materials or qualifying components for harsh service environments, the TMA 800 offers the accuracy, reliability, and usability demanded by today’s materials labs.
  • TMA 800

FEATURES

  • True Vertical Alignment for Accuracy
  • Unlike most TMA units that use U-shaped geometry for convenience, the TMA 800 features a direct, vertical in-line design. This configuration minimizes friction, ensures uniform force application, and reduces noise and sample deformation—delivering superior measurement precision.
  • Oil Float Suspension System (Exclusive to the TMA 800)
  • During softening or transition, even slight mechanical noise or unintentional force can distort results. The Oil Float Suspension System supports the full weight of the probe and force coil, ensuring that only the intended force is applied. This system also dampens external vibrations, ensuring greater accuracy and protection of delicate materials.
  • Interchangeable Probes & Sample Holders
  • Easily switch between expansion, flexure, and penetration probes to meet a wide range of testing requirements. A specialized accessory allows for convenient mounting of films, fibers, and other delicate specimens, supporting industry-standard testing methods.
  • Advanced, Computerized Operation
  • The TMA 800 is fully computerized, with most functions controlled via an intuitive software interface. The pre-calibrated temperature sensor provides precise temperature readings, and calibration routines are straightforward—even for fast-scanning or complex samples. Software capabilities include:
  • • Real-time data display
    • Automatic zeroing and sample height reading
    • Curve optimization and overlay
    • Program archiving, comparison, and automated calculations
  • Cross-section of the TMA
  • The TMA 800 is an outstanding solution for laboratories seeking a cost-effective yet high- performance instrument to meet regulatory requirements for thermal expansion—especially in electronics, aerospace, composites, and other sensitive industries where dimensional stability is critical. Here are a few ways the TMA 800 is engineered for precision thermal analysis:
  • • The cold sink surface is cooled by a heat exchanger that easily connects to an external chiller using a single-bolt attachment, simplifying low-temperature operation.
    • The 40 mm furnace height provides an exceptionally wide and uniform temperature zone, ensuring consistent heating across the full sample length.
    • A high-resolution Linear Variable Differential Transformer (LVDT) sensor offers both the sensitivity to detect micron-level changes and the range to track large dimensional shifts.
    • The submerged float supports the full weight of the sample probe and core rod while dampening external vibrations and protecting sensitive quartz components.
    • The core rod and probe are fully supported by AMI’s unique Oil Float Suspension System, delivering friction-free motion and unmatched force control during softening transitions.
  • Whether you're focused on glass transition detection, CTE measurement, or structural deformation, the TMA 800 is optimized to deliver the accuracy, repeatability, and confidence your lab demands.

SPECIFICATIONS

  • Model TMA 800
    Isothermal Stability ± 0.4 °C
    Probe control Oil float System and Electronic Force
    Thermocouple Type Type K Nickel-Chromel
    Temperature Range Ambient °C to 800 °C (-80 °C to 800 °C with RCS System)
    Temperature Program 0.1 °C/min to 60 °C/min
    Temperature Accuracy 1°C
    Temperature Precision 1°C
    Maximum Sample Size Up to 10 mm in length
    Maximum Load 2N
    Cooling System Water Cooling (Standard); RCS Cooling (Option)
    Testing Geometries Expansion, Tensile, Penetration, 3 Point Bending, Compression, Dilatometer
    Power Requirements 100-120/220-240V, 60 / 50Hz
    Options Multi-channel Gas Inlet Controller (Gas switching for up to four gases)
  • TMA Data

 

Switch-6

  • The automatic multi-channel gas inlet controller, Switch-6, features an integrated design, enabling one- button switching among multiple gases and supporting up to six input ports. Users can select any gas path for output as needed, making it ideal for applications requiring frequent gas changes during various testing procedures.
  • This device is highly compatible, designed to work seamlessly with the full range of AMI instruments and a wide variety of systems from other manufacturers.
  • Safety
  • Features a streamlined valve disassembly and assembly when switching between different gases, significantly reducing the risk of leakage from manual operations. Additionally, a corrosion-resistant version is available upon request to accommodate more demanding environments.
  • Simplicity
  • Enables automatic gas switching with a single button press. It also performs automatic pipeline purging, preventing residual gases from affecting the accuracy of subsequent experimental results.
  • Flexibility
  • Supports six input ports and one output port, with the option to cascade multiple units—allowing for 6, 12, 18, or more gas paths as needed.
  • Automatic Multi-channel Gas Inlet Controller
  •   Switch-6
    Number of ports 6 (12, 18 are optional)
    Tubing size 1/8 inch
    Pressure Near atmospheric
    Gas types N2, H2, Ar, and other gases (corrosive gases such as H2S, NH3, HCl, etc., are available as options)
    Dimensions and weight L 28.7 in (730 mm) ×
    W 9.5 in (240 mm) ×
    H 10.0 in (253 mm),
    11 lbs (5 kg)

 

Master 400

INTRODUCTION

  • The Master 400 is a compact desktop gas analysis system developed by Advanced Measurement Instruments (AMI) and launched in 2022. Designed for both qualitative and quantitative analysis of gas components, it supports on-line and off-line measurements with exceptional speed and precision. With its intuitive interface, fast response, and high accuracy, the Master 400 meets the demands of modern laboratories across a wide range of applications. It seamlessly integrates with various systems, including chemisorption analyzers, reactor systems, breakthrough curve analyzers, and thermogravimetric analyzers, making it a versatile tool for advanced gas characterization.
  • Master 400 quadrupole mass spectrometer

KEY FEATURES

  • Master 400
  • Temperature-Controlled Inlet Pipeline
  • Prevents condensation of the injection gas duringinjection, ensuring more reliable results.
  • Bakeable Mass Spectrometry Chamber
  • Minimizes background gas interference forcleaner and more accurate measurements.
  • Multi-Signal Input/Output
  • Enables automatic control and seamless integration with external instruments.
  • Millisecond-Level Response and Scanning
  • Enables fast, real-time online gas analysis.
  • Dual Detectors: Faraday Cup and Electron Multiplier
  • Provides high sensitivity and a broad detection range, from 100% down to ppb.
  • Advanced Analysis Software
  • Supports multicomponent sampling for both qualitative and quantitative gas analysis.
  • Customizable Sampling System
  • Allows for gas pretreatment and multichannel detection tailored to specific needs.
  • Built-in Filament Pressure Protection
  • Extends filament lifespan through intelligent pressure management.
  • Sampling System
  • Stainless steel or quartz glass capillary with corresponding filter membrane; features two-stage pressure reduction and a heating jacket (room temp to 200 °C) for stable gas delivery.
  • Vacuum System
  • Combines a turbomolecular pump with an oil-free diaphragm dry pump. A full-range vacuum gauge monitors pressure to ensure stable mass spectrometer operation. The stainless steel chamber features a heating jacket (up to 200 °C) for regular baking and degassing, with independent temperature control for both the chamber and sample tube.
  • Quadrupole System
  • Includes an electron bombardment ion source, a quadrupole mass separator, and a high-sensitivity detector for accurate mass analysis.
  • Data Processing System
  • Multi-channel gas detection software supports qualitative and quantitative analysis; compatible with Windows 7/10.

APPLICATIONS

  • Coupled with a Chemisorption Analyzer
  • The integration of mass spectrometry with chemisorption analyzers combines precise control of gas adsorption and desorption (e.g., TPD and TPR) with real-time, high-sensitivity gas composition analysis. This powerful combination allows dynamic monitoring of gas species, concentration changes, and temperature-dependent behavior during reactions. The result is deeper insight into the distribution of active sites, reaction kinetics, and structure–property relationships on material.
  • AMI-300
  • Coupled with a Reactor System
  • The reactor system is a compact, high-efficiency setup that simulates real industrial reaction conditions with precise control. Coupled with the Master 400, it enables real-time detection of reaction products from microreactors. This provides insights into composition, reaction mechanisms, and kinetic behavior. It also supports catalyst evaluation and the development of new catalysts and reaction processes.
  • μBenchCAT
  • Coupled with a Breakthrough Curve Analyzer
  • The reactor system is a compact, high-efficiency setup that simulates real industrial reaction conditions with precise control. Coupled with the Master 400, it enables real-time detection of reaction products from microreactors. This provides insights into composition, reaction mechanisms, and kinetic behavior. It also supports catalyst evaluation and the development of new catalysts and reaction processes.
  • BTSorb-100
  • Coupled with a TGA or STA
  • The Master 400 enables rapid qualitative and quantitative analysis of gas products released during TGA or STA experiments. It supports synchronous triggering and temperature signal import for seamless integration with thermal analyzers. TGA-MS and STA-MS combined technologies are widely used in the study of polymers, inorganic materials, and organic-inorganic composites.
  • TGA 1000

SPECIFICATIONS

  • Mass Range 1-100 Optional : 200 or 300 amu
    Detection Limit < 500 ppb
    Scanning Rate 1 ms-16 s/amu
    Sampling Pressure 0.5 bar- 1.5 bar
    Maximum heating
    temperature of sample tube
    200°C
    Maximum temperature of Chamber 200°C
    Filament Material Iridium Filament
    Detector Faraday cup/SEM Electron multiplier