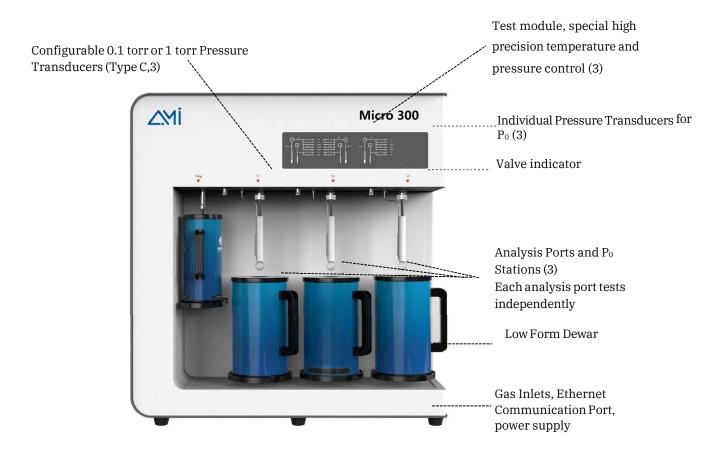


AMI-Micro 300 Series

BET Surface Area and Pore Size Analyzer

"Accurate, Accessible, Advanced Gas Sorption"

- ✓ Range of Pore Diameter 0.35-500nm
- ✓ Repeatability of Median Pore Diameter <0.02 nm
- \checkmark Range of Specific Surface Area >0.0001 m²/g
- ✓ Repeatability of Specific Surface Area +/- 1 %


- o Micropore analyzer with 3 analysis ports
- o Adsorption and desorption isotherms
- o Single-/Multipoint BET Surface Area
- o Langmuir surface area
- o Pore size distribution according to BJH
- o STSA-surface area
- Dubinin-Radushkevich
- Horvath-Kawazoe
- o Saito-Foley
- o t-plot

INTRODUCTION

The **AMI-Micro 300 Series** is a high-precision physisorption instrument designed for specific surface area and pore size analysis of various materials. It is equipped with three independently operating analysis ports, allowing different adsorbate gases to be configured and tested simultaneously. Based on functional capabilities, the series is categorized into three models: A, B, and C (see the specification table for additional details). Each analysis station features a dedicated dosing manifold to optimize analysis time and ensure precise gas dosing.

The Micro 300 B and C models are equipped with a 1 torr or 0.1 torr high-sensitivity pressure transducers and a turbo molecular pump with an ultimate pressure of 10⁻⁸ Pa, ensuring precise measurements of microporous structures. Furthermore, all three analysis stations support in-situ sample preparation, minimizing the risk of contamination. This instrument is particularly well-suited for the characterization of microporous materials, including MOFs, molecular sieves, catalysts, activated carbon, and other porous substances.

Instrument Structural Layout of AMI-Micro 300 Series

FEATURES

Module Design for Minimal Dead Volume

The internal gas path design of the instrument adopts a unique integrated metal module design, which not only reduces the internal dead volume space but also lowers the system leakage rate.

Saturated Vapor Pressure Po

An independent P_0 pressure transducer is configured at 133 kPa for P_0 value testing, enabling real-time P/P_0 measurement for more accurate and reliable test data. Alternatively, an atmospheric pressure input method can be used to determine P_0 .

Independent analysis ports

With independent analysis ports, the system employs a unique vacuum control logic that allows each station to operate without disruption, even when using a single mechanical pump or pump group. This enables simultaneous, independent experiments, meeting diverse adsorbent testing needs while ensuring high efficiency.

High-Precision Micropore Distribution Analysis

Utilizes advanced micropore models, including the Horvath-Kawazoe (HK) and Saito-Foley (SF) methods, to accurately determine pore size distribution. Ensures an aperture deviation of less than 0.02 nm, providing precise characterization of microporous materials in gas adsorption studies.

Thermal Stabilization

A core rod in the sample tube reduces dead volume and stabilizes the cold free space coefficient, while an iso-thermal jacket maintains a constant thermal profile along the tube. Additionally, automatic helium correction ensures precise calibration for any powder or particulate material, minimizing temperature- related deviations during analysis.

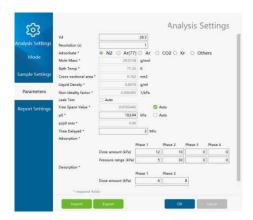
Customizable Selection of Pressure Transducers

Depending on the model, the **AMI-Micro 300 Series** offers various quantities and types of pressure transducers. Among them, the Micro 300C, equipped with a 1 Torr transducer (selectable 0.1 Torr), enables a partial pressure (P/Po) of up to 10^{-8} (N₂/77 K) in physical adsorption analysis.

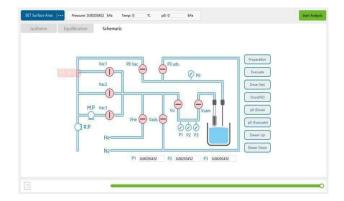
Optimized Manifold Contamination Control

This system features a multi-channel, adjustable, and parallel vacuum design with segmented vacuum control. This setup effectively prevents samples from being drawn up into the analyzer therefore preventing manifold contamination.

Turbo Molecular Pump


A Turbo Molecular pump is included on the Micro 300B and Micro 300C. Achieving ultimate pressures of 10^{-8} Pa, this system ensures a solid foundation for precise micropore analysis at ultralow pressures.

In-situ Degassing Ports


Equipped with three in-situ degassing ports, enabling simultaneous degassing and analysis. Each port offers independent temperature control from ambient to 400°C, ensuring precise sample preparation. In-situ degassing enhances microporous material analysis by providing superior efficiency over ex-situ methods.

SOFTWARE

PAS Software is an intelligent solution for operation control, data acquisition, calculation, analysis, and report generation on the Windows platform. It communicates with the host via the LAN port and can remotely control multiple instruments simultaneously.

PAS Software adopts a unique intake control method, optimizing pressure in the adsorption and desorption processes through a six-stage setting, which improves testing efficiency

Changes in pressure and temperature inside the manifold can be directly observed in the test interface, providing convenience for sample testing and instrument maintenance. Current state of analyzer can be intuitively understood with the indicator light and event bar.

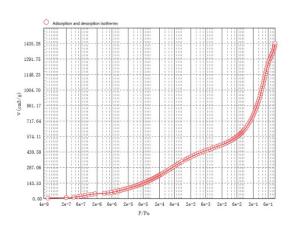
Each adsorption equilibrium process is dynamically displayed on the test interface. Adsorption characteristics of the sample can be easily understood.

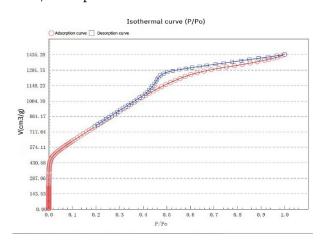
A clear and concise report setting interface, including the following:

- Adsorption and desorption isotherms
- Single-/Multipoint BET surface area
- · Langmuir surface area
- STSA-surface area
- pore size distribution according to BJH
- t-plot
- Dubinin-Radushkevich
- Horvath-Kawazoe
- Saito-Foley

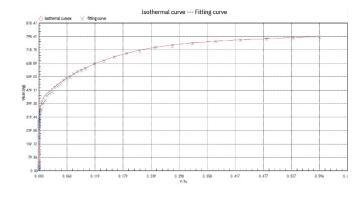
TYPICAL ANALYSIS RESULTS

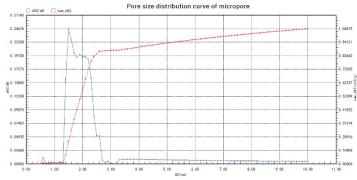
• The specific surface area test results for iron ore powder are shown in the figure below. As a material with an inherently low specific surface area, the repeatability error in the measurements is only 0.0015 m²/g, demonstrating high testing precision.


ID	Pd	Pcd	P/Po	V	R	Time
2	10. 57665	6. 49165	0.06368	0.05149	1.32095	16:39:04
3	14. 47043	10.49325	0.10300	0.05714	2.00944	16:40:34
4	20. 49214	15, 55271	0.15266	0.06328	2.84716	16:42:08
5	26, 25142	20.97835	0.20608	0.06958	3.73044	16:43:45
6	31.09524	26.11512	0.25661	0.07540	4.57787	16:45:24
7	36. 24625	31, 26206	0, 30719	0.08122	5. 45905	16:47:06
Slope		Intercept	Vm		С	Сс
16. 90313		0. 25562	0. 05828	67.	12578	0. 99997


Specific	surface	area	(m2/g)	:	0.25410
----------	---------	------	--------	---	---------

ID	Pd	Pcd	P/Po	v	R	Time
2	11. 12797	7. 02669	0.06872	0.05193	1. 42099	14:21:24
3	15.08480	11.06897	0.10834	0.05767	2. 10708	14:22:55
4	21.71276	16.45800	0.16109	0.06420	2.99078	14:24:29
5	27. 29098	21.94468	0.21492	0.07083	3.86529	14:26:07
6	32.00053	27.05703	0.26512	0.07653	4.71376	14:27:46
7	37. 32853	32, 26907	0. 31619	0. 08262	5. 59644	14:29:28
	Slope	Intercept	Vm		С	Сс
16 70495		0.27576	0.05962	61	06407	0.00006


Specific surface area (m2/g): 0.25557


• Adsorption and Desorption Isotherms of typical macro/mesoporous materials - silica

• Analysis of pore size distribution of activated carbon materials by NLDFT.

SPECIFICATIONS

Model		AMI-Micro 300 Series					
Specific Model		300A	300B	300C			
Analysis Ports		3	3	3			
P ₀ Transdu	icer	3	3	3			
Analysis Pressure Transducer		3	5	9			
	Port 1	1000 torr	1000 torr, 10 torr, 1(0.1) torr	1000 torr, 10 torr, 1(0.1) torr			
Accuracy PTs	Port 2	1000 torr	1000 torr	1000 torr, 10 torr, 1(0.1) torr			
	Port 3	1000 torr	1000 torr	1000 torr, 10 torr, 1(0.1) torr			
Pump		1 Mechanical Pump (ultimate vacuum 10 ⁻² Pa);	1 Mechanical Pump (ultimate vacuum 10 ⁻² Pa); 1 Turbo Molecular Pump (ultimate vacuum 10 ⁻⁸ Pa);				
P/P ₀		10 ⁻⁴ - 0.998	10 ⁻⁸ - 0.998				
Surface Area		≥ 0.0005 m²/g, test repeatability: RSD ≤ 1.0%					
Pore Siz	:e	0.35-500 nm, test repeatability: ≤0.02 nm					
Pore Volu	me	≥ 0.0001 cm³/g					
Degassing Ports		3 in-situ					
Adsorbates		N ₂ , CO ₂ , Ar, Kr, H ₂ , O ₂ , CO, CH ₄ , etc.					
Cold Trap		1					
Volume and Weight		L 34.5 in (870 mm) × W 22.5 in (570 mm) × H 35.0 in (890 mm), 176-198 lbs. (80-90 kg)					
Power Require	ements	110V or 200-240 VAC, 50/60 Hz, maximum power 300 W					